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We study the range of multifractality for the probability density P (r,t) of random walks on linear ran-
dom fractals, for a given distance r and time ¢. Analytical study of the moments { P¥ r,t)) shows that
multifractality exists only when 1 < qrd"’ /tand gr/t <1, with d,,=2d, where d; is the fractal dimension
of the linear fractal. The results can be extended to more general random fractals and are consistent

with recent numerical data for the form of (P (r,1)).
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Several recent studies have demonstrated that in a wide
range of dynamical processes in random media, the usual
scaling laws fail to exist [1-9]. Rather, the quantities
characterizing these processes have anomalously broad
distributions. Their moments cannot be described by a
single exponent but an infinite hierarchy of exponents is
needed to characterize them. This phenomenon is called
multifractality. Some examples are the growth probabili-
ties in diffusion-limited aggregates (DLA) [1-3], the volt-
age drops in percolation clusters [4], the probability den-
sity of random walks on fractals [7], the tracer concentra-
tion in stratified media with random fields [8], and the
amplitudes of vibrational excitations (fractons) in per-
colation systems [9].

An exactly solvable model is a random walk on a linear
chain, generated by a simple random walk in d dimen-
sions (RW on RW chain). Although in this model the
chain can intersect itself in the space, the walker is con-
strained to follow the topologically one-dimensional path
which has been created sequentially by a previous ran-
dom walk. The basic quantity describing the spatial ex-
tension of the random walk on the chain is the probabili-
ty density P(r,t) that the walker is at a given distance r at
time ¢ from its starting point » =0 at t =0. As we have
shown recently, the fluctuations of P(r,t) display mul-
tifractal features [7] characterized by a nonstandard be-
havior of the moments { P%(r,t)) (g >0) and by an anom-
alously broad distribution N (InP) of the values P =P (r,t)
between |InP| and |InP|+d|InP]|.

In this article we show that this multifractal behavior
does not occur for all values ¢ >0. Rather, we find that
the conditions on ¢, which are necessary for the mul-
tifractality to appear, are
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Here d,, is the anomalous diffusion exponent describing
the behavior of the mean-square displacement of the ran-
dom walk, R?*=(r?)~ t**_ For linear fractals,
d,,=2d;, where d, is the fractal dimension of the fractal
chain. In the case of RW chains, d, =2 and d,=4. Out-
side the range (1), the multifractality breaks down and
standard scaling behavior takes place.

To show this, we follow Ref. [7] and start with the
definition of the configurational average,
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where the sum is over all N, sites i of the chain located at
a distance r from the origin, and P;(r,t) denotes the prob-
ability to be at site i. Note that N, includes many
configurations with a very large number of sites.

After time ¢, the random walk can be at many different
sites i at distance r from the origin, and their correspond-
ing probabilities P;(7,¢) may obtain very different values
according to their chemical distance to the origin. The
crucial point is that along the chain the probability to be
at the chemical distance [/ is independent of the chain
configuration in space and given simply by a Gaussian,

P(lLt)~t V2exp(—al?/t) (3)

for I <t, and P(l,t)=0 for [ >¢t. Thus the sum in (2) can
be written as a sum over sites having the same / values,
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N, gr/t>1. Note that for t<r? gq,,=r>/t> and for
(Pir,1)) =3 qu(l’t) ) “) q <qmin» {PUr,t)) has a Gaussian form similar to Eq.

1 r

where N, denotes the number of those sites which are at
chemical distance / from the origin. Since P (/,¢) does not
depend on the chain configuration, its average moments
are simply P9(1,t).

By definition, N,/N,=¢(l|r) is the probability that
two sites separated a distance r are at chemical distance /.
Transforming the sum (4) into an integral over / yields

(Pir,0))= ['dl $(1|rPYL1) . (5)

The lower integration limit / =7 is due to the fact that
¢(I|r)=0 when I <r (see also [9]), while the upper limit
comes from the condition that P(/,¢)=0 when [ > t.

For the RW chain, the structural function ¢ is propor-
tional to a Gaussian,

S| ~(1/1r2 /D42 Yexp(—ar? /D), 1>r, ©6)

which satisfies the normalization condition 3,N,/N,=1,
which follows from (4) with ¢ =0. Note that ¢(!|r) in (6)
is normalized only for d > 2.

We consider here the large-time case ¢ > r2, where the
upper integration limit / =¢ in (5) corresponds to values
of I well beyond the position of the maximum of ¢(/|r) at
I ~r2. According to (6), ¢(I|r) increases exponentially as
exp(z—rz/l) for r <l <r? and decreases as (1/1)%/? for
I>r-.

We proceed by evaluating the integral (5) by using the
method of steepest descent. The saddle occurs at

I=1,=(r’t/q)'"?, (7)
which yields
(Pr,t))~t 9%exp[ —const Xq(r /R)*], (8a)

with 7=1 and u =%. The nonlinear g dependence of the
exponent in (8a) indicates multifractal behavior of the
moments in r space as discussed in [7]; see also [1,5,8,9].
The result (8a) holds only when r <I,<r?. This is be-
cause the saddle point must be both in the integration
range and where the exponential behavior dominates the
algebraic term in (6).

For I, >r?, gr*/t <1 and the exponent term in P9(/,t)
does not have much of an effect on the position of the
maximum. The integral in (5) is dominated by values of
I ~r? near the maximum of ¢(I|7) and we find

(PUr,t))~t~92p(r?|r)exp[ —const X (gr*/1)] ,
Ip>r%. (8b)

Equation (8b) indicates that multifractality breaks down
in the regime I, > 72, i.e., for gr*/t < 1, the moments scale
in the usual linear way with g.

For [/, <r, the integrand is peaked at / ~r and we ob-
tain

(PUr,t))~t 92p(r|rexp[ —const X (gr2/t)] ,
lo<r, (8c)

which implies standard behavior for the moments when

(8c).
According to (8), the exponential behavior of the mo-
ments changes drastically with g. For g <t/r*=gq_.

we have ln(Pq(r,t))~—Qr4/t; in the multifractal re-
gime g, <q<t/r=q.. we have In{P%«rt))
~—q'343 /113, and  for q¢>gq. we have

In{P%r,t)) ~ —qr?/t, leading to the range of multifrac-
tality given in Eq. (1). We note that analogous crossovers
were found for fractons in percolation clusters [9], but
there the situation is considerably more complicated.

The above rigorous arguments can be extended to
RW’s on general linear fractals, where similar considera-
tions can be applied. We assume that ¢(/|r) is a function
of the scaling variable r /1", i.e.,

S ry~(1/D(r /1% )8exp[ —c (r /17)?] , 9)

where v=1/d, and 8=1/(1—v) and g is the exponent
characterizing the probability of the fractal chain to close
a loop [10]. The scaling form (9) holds, e.g., for self-
avoiding random walks, where v=3/(d +2), g=(y
—1)/v+d —1/v,and y=4%ford =2 and y =1 ford =3
[10]. Above the critical dimension, d 2d.=4, y=1,
v=1 and (9) reduces to (6).

Since (3) is exact for random walks on all linear frac-
tals, we can proceed as above for the RW chain. Using
(5) and (9), we find the saddle point at

IO~(r8t/q)l/(8+l) (10)

and the multifractal result (8a) follows for the range

r<ly<r!’Y, where now

D S
d,—1 2—v

and u =d,, /(d,—1).
In this case, our result (8b) can be written as

(11

T

(Pq(r,t))~t_q/2¢(r1/V|r)exp

—const X qrt ] ,

qrdw/t <1, (12)
while (8c) is changed to

1/v

(PUr,t)) ~t~92¢(r|r)exp | —const X grt—

>

gr/t>>1. (13)

Equations (12) and (13) reduce to (8b) and (8c) for the
RW chain where v=1 and d,=4. Equation (12) also

2
suggests that for the first moment ¢ =1,

(P(r,t))~t 2exp r’

—const X

(14)

The above results are rigorous for random walks on
linear fractals. For the more general case, random walks
on random fractals, one can apply an analogous approach
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based on scaling arguments and numerical simulations.
For this case, numerical data for percolation clusters at
criticality suggest that [11]

r

¢<z|r)~% [F exp[ —c(r/17)]V/1—Y (15)
and [7,12]
(P(Lt))~ —5exp[ — (l/tl/d"’) 1,

=d! /(dl—1). (16)

Here d; is the chemical dimension of the fractal, defined
by th(; scaling of the mass with the chemical distance,
M ~1"", and v=d, /d substitutes v. The exponent d, i

the diffusion exponent in the chemical distance metrlc,
dl
ie., (I)~t V. The probability density P(/,¢) for gen-

eral fractals is not the same for each site at chemical dis-
tance [ as for the case of linear fractals. Thus for general
fractals Eq. (5) should be replaced by

(Pi(r,0))= [l (1) (PULD) . (17)

However, as shown in [7], the fluctuations of P(/,t) are
very narrow and therefore we expect that (P%(/,z)) can
be replaced by (P(l,t))?. To proceed, we calculate
(P%r,t)) using this assumption and Egs. (16) and (17).
For the steepest descent to be valid, the saddle point

l/d 1/[8;+%/(1—=%)]

IO=(r1/(l—V)t w/ )

should be in the range r < I, <r!/*. This yields the range
of moments for which multifractality is expected to
occur,

2335
¢ |dl-n ;|1
9 min = d <g< |= =G max > (18)
pow r
which is a generalization of (1). In this range the mul-
tifractal result, E92 (8a) is valid with the prefactor ¢ ~7/2
replaced by ¢ ,d,=2d,/d,,
dl—1
= s 1
T a1 (19)

and u =d, /(d,—1). For values of q outside the range
given by Eq. (18), the form of {P%r,t)) will depend on
the form of (P (,#)). A reasonable assumption, support-
ed by numerical s1mulatlons on regular fractals [13], is

that (Plt) for t>>l‘” has the form (Plt)

~t Y exp[ 1 '”/t] This yields that for q ”’/t
<<1 (or g <<q.,), (P%r,t)) has the form of (12) thh

—d
the prefactor ¢ 972 replaced by ¢ 2 Thus one ob-
tains for g =1

dw

1/7d

d /2
s ], r<<t ¥

(P(r,t)y~1 %7 exp

r
—const X

(20)

similar to Eq. (14). We note that Eq. (20) has also been
obtained by several recent numerical simulations for ran-
dom walk on the Sierpinski gasket [13].
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